Efficient Discovery of Functional Dependencies and Armstrong Relations - Université d'Auvergne - Clermont-Ferrand I Accéder directement au contenu
Communication Dans Un Congrès Année : 2000

Efficient Discovery of Functional Dependencies and Armstrong Relations

Résumé

In this paper, we propose a new efficient algorithm called Dep-Miner for discovering minimal non-trivial functional dependencies from large databases. Based on theoretical foundations, our approach combines the discovery of functional dependencies along with the construction of real-world Armstrong relations (without additional execution time). These relations are small Armstrong relations taking their values in the initial relation. Discovering both minimal functional dependencies and real-world Armstrong relations facilitate the tasks of database administrators when maintaining and analyzing existing databases. We evaluate Dep-Miner performances by using a new benchmark database. Experimental results show both the efficiency of our approach compared to the best current algorithm (i.e. Tane), and the usefulness of real-world Armstrong relations.
Fichier principal
Vignette du fichier
Efficient Discovery of Functional Dependencies and Armstrong Relations.pdf (570.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00271567 , version 1 (26-07-2024)

Identifiants

Citer

Stéphane Lopes, Jean-Marc Petit, Lotfi Lakhal. Efficient Discovery of Functional Dependencies and Armstrong Relations. 7th International Conference on Extending Database Technology (EDBT 2000), Mar 2000, Constance, Germany. pp.350-364, ⟨10.1007/3-540-46439-5_24⟩. ⟨hal-00271567⟩
154 Consultations
13 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More