Second order asymptotics and uniqueness for self-similar profiles to a singular diffusion equation with gradient absorption - Réseau de recherche en Théorie des Systèmes Distribués, Modélisation, Analyse et Contrôle des Systèmes Access content directly
Preprints, Working Papers, ... Year : 2024

Second order asymptotics and uniqueness for self-similar profiles to a singular diffusion equation with gradient absorption

Abstract

Solutions in self-similar form presenting finite time extinction to the singular diffusion equation with gradient absorption $$ \partial_t u - \mathrm{div}(|\nabla u|^{p-2}\nabla u) +|\nabla u|^{q}=0 \qquad {\rm in} \ (0,\infty)\times\real^N $$ are studied when $N\geq1$ and the exponents $(p,q)$ satisfy $$ p_c=\frac{2N}{N+1}

Fichier principal
Vignette du fichier
Uniqueness_FastPLE_IL20240613.pdf (282.29 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04613158 , version 1 (15-06-2024)

Identifiers

  • HAL Id : hal-04613158 , version 1

Cite

Razvan Gabriel Iagar, Philippe Laurençot. Second order asymptotics and uniqueness for self-similar profiles to a singular diffusion equation with gradient absorption. 2024. ⟨hal-04613158⟩
3 View
0 Download

Share

Gmail Mastodon Facebook X LinkedIn More